Selective cell death of oncogenic Akt-transduced brain cancer cells by etoposide through reactive oxygen species mediated damage.
نویسندگان
چکیده
We have established several glioma-relevant oncogene-engineered cancer cells to reevaluate the oncogene-selective cytotoxicity of previously well-characterized anticancer drugs, such as etoposide, doxorubicin, staurosporine, and carmustine. Among several glioma-relevant oncogenes (activated epidermal growth factor receptor, Ras, and Akt, as well as Bcl-2 and p53DD used in the present study), the activated epidermal growth factor receptor, Ras, and Akt exerted oncogenic transformation of Ink4a/Arf(-/-) murine astrocyte cells. We identified that etoposide, a topoisomerase II inhibitor, caused selective killing of myristylated Akt (Akt-myr)-transduced Ink4a/Arf(-/-) astrocytes and U87MG cells in a dose- and time-dependent manner. Etoposide-selective cytotoxicity in the Akt-myr-transduced cells was shown to be caused by nonapoptotic cell death and occurred in a p53-independent manner. Etoposide caused severe reactive oxygen species (ROS) accumulation preferentially in the Akt-myr-transduced cells, and elevated ROS rendered these cells highly sensitive to cell death. The etoposide-selective cell death of Akt-myr-transduced cells was attenuated by pepstatin A, a lysosomal protease inhibitor. In the present study, we show that etoposide might possess a novel therapeutic activity for oncogenic Akt-transduced cancer cells to kill preferentially through ROS-mediated damage.
منابع مشابه
CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملHuman Mut T homolog 1 (MTH1)
Oncogenic RAS-induced reactive oxygen species (ROS) trigger barriers to cell transformation and cancer progression through tumor-suppressive responses such as cellular senescence or cell death. We have recently shown that oncogenic RAS-induced DNA damage and attendant premature senescence can be prevented by overexpressing human MutT Homolog 1 (MTH1), the major mammalian detoxifier of the oxidi...
متن کاملInhibition of PI3K/AKT/mTOR axis disrupts oxidative stress-mediated survival of melanoma cells
Elevated oxidative stress in cancer cells contributes to hyperactive proliferation and enhanced survival, which can be exploited using agents that increase reactive oxygen species (ROS) beyond a threshold level. Here we show that melanoma cells exhibit an oxidative stress phenotype compared with normal melanocytes, as evidenced by increased total cellular ROS, KEAP1/NRF2 pathway activity, prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 6 8 شماره
صفحات -
تاریخ انتشار 2007